- Morris B. J. (2013). Seven sirtuins for seven deadly diseases of aging. Free radical biology & medicine, 56, 133–171. https://doi.org/10.1016/j.freeradbiomed.2012.10.525
- Jasper H. (2013). Sirtuins: Longevity focuses on NAD+. Nature chemical biology, 9(11), 666–667. https://doi.org/10.1038/nchembio.1369
- Grabowska, W., Sikora, E., & Bielak-Zmijewska, A. (2017). Sirtuins, a promising target in slowing down the ageing process. Biogerontology, 18(4), 447–476. https://doi.org/10.1007/s10522-017-9685-9
- Verdin E. (2014). The many faces of sirtuins: Coupling of NAD metabolism, sirtuins and lifespan. Nature medicine, 20(1), 25–27. https://doi.org/10.1038/nm.3447
- Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature reviews. Molecular cell biology, 17(11), 679–690. https://doi.org/10.1038/nrm.2016.93
- Johnson, S., & Imai, S. I. (2018). NAD + biosynthesis, aging, and disease. F1000Research, 7, 132. https://doi.org/10.12688/f1000research.12120.1
- Rajman, L., Chwalek, K., & Sinclair, D. A. (2018). Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell metabolism, 27(3), 529–547. https://doi.org/10.1016/j.cmet.2018.02.011
- Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., & Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434(7029), 113–118. https://doi.org/10.1038/nature03354
- Liu, Y., Dentin, R., Chen, D., Hedrick, S., Ravnskjaer, K., Schenk, S., Milne, J., Meyers, D. J., Cole, P., Yates, J., 3rd, Olefsky, J., Guarente, L., & Montminy, M. (2008). A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 456(7219), 269–273. https://doi.org/10.1038/nature07349
- Bordone, L., & Guarente, L. (2005). Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature reviews. Molecular cell biology, 6(4), 298–305. https://doi.org/10.1038/nrm1616
- Iwabu, M., Yamauchi, T., Okada-Iwabu, M., Sato, K., Nakagawa, T., Funata, M., Yamaguchi, M., Namiki, S., Nakayama, R., Tabata, M., Ogata, H., Kubota, N., Takamoto, I., Hayashi, Y. K., Yamauchi, N., Waki, H., Fukayama, M., Nishino, I., Tokuyama, K., Ueki, K., … Kadowaki, T. (2010). Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature, 464(7293), 1313–1319. https://doi.org/10.1038/nature08991
- Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P., & Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458(7241), 1056–1060. https://doi.org/10.1038/nature07813
- Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M. W., & Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature, 429(6993), 771–776. https://doi.org/10.1038/nature02583
- Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P., & Auwerx, J. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 127(6), 1109–1122. https://doi.org/10.1016/j.cell.2006.11.013
- Zillikens, M. C., van Meurs, J. B., Sijbrands, E. J., Rivadeneira, F., Dehghan, A., van Leeuwen, J. P., Hofman, A., van Duijn, C. M., Witteman, J. C., Uitterlinden, A. G., & Pols, H. A. (2009). SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin. Free radical biology & medicine, 46(6), 836–841. https://doi.org/10.1016/j.freeradbiomed.2008.12.022
- Cohen, D. E., Supinski, A. M., Bonkowski, M. S., Donmez, G., & Guarente, L. P. (2009). Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes & development, 23(24), 2812–2817. https://doi.org/10.1101/gad.1839209
- Gao, J., Wang, W. Y., Mao, Y. W., Gräff, J., Guan, J. S., Pan, L., Mak, G., Kim, D., Su, S. C., & Tsai, L. H. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 466(7310), 1105–1109. https://doi.org/10.1038/nature09271
- Kilic, U., Gok, O., Erenberk, U., Dundaroz, M. R., Torun, E., Kucukardali, Y., Elibol-Can, B., Uysal, O., & Dundar, T. (2015). A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PloS one, 10(3), e0117954. https://doi.org/10.1371/journal.pone.0117954
- atone, C., Di Emidio, G., Barbonetti, A., Carta, G., Luciano, A. M., Falone, S., & Amicarelli, F. (2018). Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Human reproduction update, 24(3), 267–289. https://doi.org/10.1093/humupd/dmy003
- Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z., & Cohen, H. Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388), 218–221. https://doi.org/10.1038/nature10815
- Imai, S. I., & Guarente, L. (2016). It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ aging and mechanisms of disease, 2, 16017. https://doi.org/10.1038/npjamd.2016.17
- Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T., & Bober, E. (2008). Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation research, 102(6), 703–710. https://doi.org/10.1161/CIRCRESAHA.107.164558
- Someya, S., Yu, W., Hallows, W. C., Xu, J., Vann, J. M., Leeuwenburgh, C., Tanokura, M., Denu, J. M., & Prolla, T. A. (2010). Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell, 143(5), 802–812. https://doi.org/10.1016/j.cell.2010.10.002
- Kumar, R., Mohan, N., Upadhyay, A. D., Singh, A. P., Sahu, V., Dwivedi, S., Dey, A. B., & Dey, S. (2014). Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging cell, 13(6), 975–980. https://doi.org/10.1111/acel.12260
- Zhu, Y., Yan, Y., Gius, D. R., & Vassilopoulos, A. (2013). Metabolic regulation of Sirtuins upon fasting and the implication for cancer. Current opinion in oncology, 25(6), 630–636. https://doi.org/10.1097/01.cco.0000432527.49984.a3
- Zullo, A., Simone, E., Grimaldi, M., Musto, V., & Mancini, F. P. (2018). Sirtuins as Mediator of the Anti-Ageing Effects of Calorie Restriction in Skeletal and Cardiac Muscle. International journal of molecular sciences, 19(4), 928. https://doi.org/10.3390/ijms19040928
- Inoue, T., Hiratsuka, M., Osaki, M., Yamada, H., Kishimoto, I., Yamaguchi, S., Nakano, S., Katoh, M., Ito, H., & Oshimura, M. (2007). SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene, 26(7), 945–957. https://doi.org/10.1038/sj.onc.1209857
- Hiratsuka, M., Inoue, T., Toda, T., Kimura, N., Shirayoshi, Y., Kamitani, H., Watanabe, T., Ohama, E., Tahimic, C. G., Kurimasa, A., & Oshimura, M. (2003). Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochemical and biophysical research communications, 309(3), 558–566. https://doi.org/10.1016/j.bbrc.2003.08.029

mgr inż. Ewelina Kamińska
Doktoryzuję się w dziedzinie epigenetyki i biologii chemicznej na Uniwersytecie Ludwiga i Maksymiliana w Monachium.
Doniesienia Naukowe
Czy mikrobiota jelitowa może wpływać na rozwój współczesnych chorób cywilizacyjnych?
Aktywność Fizyczna i Ruch
Jaką formę medytacji wybrać?
Doniesienia Naukowe
Przegląd badań diagnostycznych
Doniesienia Naukowe
Masz w sobie białko anti-aging!
Psychologia
Psychologia skóry część 2